Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Theranostics ; 12(2): 859-874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976217

RESUMO

Rationale: Caloric restriction improves the efficacy of anti-cancer therapy. This effect is largely dependent on the increase of the extracellular ATP concentration in the tumor microenvironment (TME). Pathways for ATP release triggered by nutrient deprivation are largely unknown. Methods: The extracellular ATP (eATP) concentration was in vivo measured in the tumor microenvironment of B16F10-inoculated C57Bl/6 mice with the pmeLuc probe. Alternatively, the pmeLuc-TG-mouse was used. Caloric restriction was in vivo induced with hydroxycitrate (HC). B16F10 melanoma cells or CT26 colon carcinoma cells were in vitro exposed to serum starvation to mimic nutrient deprivation. Energy metabolism was monitored by Seahorse. Microparticle release was measured by ultracentrifugation and by Nanosight. Results: Nutrient deprivation increases eATP release despite the dramatic inhibition of intracellular energy synthesis. Under these conditions oxidative phosphorylation was dramatically impaired, mitochondria fragmented and glycolysis and lactic acid release were enhanced. Nutrient deprivation stimulated a P2X7-dependent release of ATP-loaded, mitochondria-containing, microparticles as well as of naked mitochondria. Conclusions: Nutrient deprivation promotes a striking accumulation of eATP paralleled by a large release of ATP-laden microparticles and of naked mitochondria. This is likely to be a main mechanism driving the accumulation of eATP into the TME.


Assuntos
Trifosfato de Adenosina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias/metabolismo , Animais , Restrição Calórica , Micropartículas Derivadas de Células/efeitos dos fármacos , Citratos/farmacologia , Neoplasias do Colo/metabolismo , Espaço Extracelular/metabolismo , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nutrientes , Células Tumorais Cultivadas
2.
Thromb Haemost ; 122(1): 80-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940654

RESUMO

Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Cisteína Endopeptidases/metabolismo , Ferro/metabolismo , Proteínas de Neoplasias/metabolismo , Coagulação Sanguínea/fisiologia , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/fisiologia , Cisteína Endopeptidases/efeitos adversos , Cisteína Endopeptidases/fisiologia , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Hemólise/fisiologia , Humanos , Ferro/sangue , Proteínas de Neoplasias/efeitos adversos , Proteínas de Neoplasias/fisiologia , Trombose/metabolismo , Trombose/fisiopatologia
3.
Eur J Pharmacol ; 913: 174630, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774495

RESUMO

Endothelial dysfunction contributes to the development of diabetic complications and the production of circulating microparticles (MPs). Our previous study showed that diabetic mice-derived MPs (DM MPs) had increased levels of extracellular regulated protein kinase 1/2 (ERK1/2) and impaired endothelial-dependent relaxation in aortas when compared with control mice-derived MPs. This study was designed to investigate whether PD98059, an ERK1/2 inhibitor, affects the function of aortas and DM MPs. MPs were obtained from streptozotocin-induced DM, DM after PD98059 treatment, and ICR mice as control. The mice and MPs were then analyzed on the basis of their vascular function and enzyme expressions. Compared with the controls, platelet-derived MPs and ERK1/2 levels in the MPs were significantly elevated in the DM but showed little change in PD98059-treated DM. PD98059 mainly decreased ERK1/2 phosphorylation in the MPs. In the aortas of DM and DM MPs the endothelium-dependent vascular function was impaired, and there was a significantly greater improvement in the vascular function in the PD98059-treated DM aortas and the aortas treated with PD98059-treated DM MPs than in DM aortas and the aortas treated with DM MPs. Furthermore, DM MPs increased ERK1/2 and intracellular adhesion molecule-1 (ICAM-1) expressions in the aortas, but PD98059-treated DM MPs did not show these effects. For the first time, these results indicate that PD98059 treatment improves endothelial dysfunction in DM, and adhesion properties of DM MPs can be partly blocked by PD98059 via ERK and ICAM-1. These effects may explain some of the vascular complications in diabetes.


Assuntos
Micropartículas Derivadas de Células/patologia , Diabetes Mellitus Experimental/complicações , Angiopatias Diabéticas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Endotélio Vascular/patologia , Flavonoides/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR
4.
Clin Nutr ; 40(12): 5674-5677, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742136

RESUMO

BACKGROUND & AIMS: Circulating microvesicles (cMV) are both effectors and biomarkers of cardiovascular disease (CVD), and the effects of omega 3 polyunsaturated fatty acids (n3 PUFA) in MV shedding are not yet well known. Therefore, we aimed to investigate the effects of long-term n3 PUFA supplementation on cMV release from cells of the vascular compartment in elderly subjects at very high risk of CVD. METHODS: We included 156 elderly patients 2-8 weeks after suffering an acute myocardial infarction from the OMEMI cohort. Subjects were randomly allocated to receive 930 mg EPA + 660 mg DHA (n3 PUFA intervention) or corn oil (56% linoleic acid, 32% oleic acid, 10% palmitic acid) used as placebo daily for two years. At inclusion and after one-year follow-up, prothrombotic [annexin V (AV)+] cMV derived from blood and vascular cells were phenotyped by flow cytometry. RESULTS: No differences were observed in the levels of cMV between the randomized groups at inclusion in the study. After one-year follow-up, total AV+, platelet-derived CD61+/AV+, and endothelial-derived CD31+/AV+ and CD31+/CD42b-/AV+ cMV increased significantly in both groups. In the n3 PUFA supplemented group, platelet-derived CD62P+/AV+, CD42b+/AV+ and CD31+/CD42b+/AV+; leukocyte-derived CD62L+/AV+, CD45+/AV+, and CD11b+/AV+, as well as endothelial derived CD146+/AV+, CD62E+/AV+, and CD309+/AV+ cMV also increased significantly. No significant differences were however, observed in the changes of cMV levels between groups. CONCLUSION: In elderly Norwegians who have suffered a recent acute myocardial infarction and treated as per guidelines, long-term supplementation with 1.8 g/day n3 PUFA does not modulate prothrombotic MV release from blood and vascular cells. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01841944.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Noruega , Trombose/tratamento farmacológico
5.
Toxicol Appl Pharmacol ; 431: 115742, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624356

RESUMO

Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity. We examined the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation significantly increased the biomarkers of endothelial activation and injury including endothelial microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, lung endothelial microparticles, and activated lung and endothelial microparticles while having no effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we exposed human aortic endothelial cells to benzene metabolites. Of the metabolites tested, trans,trans-mucondialdehyde (10 µM, 18h) was the most toxic. It induced caspases-3, -7 and -9 (intrinsic pathway) activation and enhanced microparticle formation by 2.4-fold. Levels of platelet-leukocyte aggregates, platelet macroparticles, and a proportion of CD4+ and CD8+ T-cells were also significantly elevated in the blood of the benzene-exposed mice. We also found that benzene exposure increased the transcription of genes associated with endothelial cell and platelet activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the lungs and the liver. Together, these data suggest that benzene exposure induces endothelial injury, enhances platelet activation and inflammatory processes; and circulatory levels of endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are excellent biomarkers of cardiovascular toxicity of benzene.


Assuntos
Benzeno/toxicidade , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Animais , Doenças Assintomáticas , Benzeno/administração & dosagem , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Cardiotoxicidade , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Exposição por Inalação , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL
6.
Eur J Endocrinol ; 185(4): 539-552, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342596

RESUMO

OBJECTIVE: Sex steroid hormones like estrogens have a key role in the regulation of energy homeostasis and metabolism. In transwomen, gender-affirming hormone therapy like estradiol (in combination with antiandrogenic compounds) could affect metabolism as well. Given that the underlying pathophysiological mechanisms are not fully understood, this study assessed circulating estradiol-driven microRNAs (miRs) in transwomen and their regulation of genes involved in metabolism in mice. METHODS: Following plasma miR-sequencing (seq) in a transwomen discovery (n = 20) and validation cohort (n = 30), we identified miR-224 and miR-452. Subsequent systemic silencing of these miRs in male C57Bl/6 J mice (n = 10) was followed by RNA-seq-based gene expression analysis of brown and white adipose tissue in conjunction with mechanistic studies in cultured adipocytes. RESULTS: Estradiol in transwomen lowered plasma miR-224 and -452 carried in extracellular vesicles (EVs) while their systemic silencing in mice and cultured adipocytes increased lipogenesis (white adipose) but reduced glucose uptake and mitochondrial respiration (brown adipose). In white and brown adipose tissue, differentially expressed (miR target) genes are associated with lipogenesis (white adipose) and mitochondrial respiration and glucose uptake (brown adipose). CONCLUSION: This study identified an estradiol-drive post-transcriptional network that could potentially offer a mechanistic understanding of metabolism following gender-affirming estradiol therapy.


Assuntos
Micropartículas Derivadas de Células/genética , Estradiol/fisiologia , MicroRNAs/genética , Transexualidade , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adulto , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estradiol/sangue , Estradiol/farmacologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Terapia de Reposição Hormonal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Interferência de RNA/efeitos dos fármacos , Pessoas Transgênero , Transexualidade/genética , Transexualidade/metabolismo , Adulto Jovem
7.
Aging (Albany NY) ; 13(14): 18718-18739, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285139

RESUMO

BACKGROUND: Endothelial microparticles (EMPs) carrying the protein disulfide isomerase (PDI) might play a key role in promoting platelet activation in diabetes. This study aimed to examine the activation of platelets, the amounts of MPs, PMPs, and EMPs, and the concentration and activity of PDI in patients with diabetic coronary heart disease (CHD) and non-diabetic CHD. METHODS: Patients with CHD (n=223) were divided as non-diabetic CHD (n=121) and diabetic CHD (n=102). Platelet activation biomarkers, circulating microparticles (MPs), the concentration of protein disulfide isomerase (PDI), and MP-PDI activity were determined. The effect of EMPs on platelet activation was investigated in vitro. Allosteric GIIb/IIIa receptors that bind to PDI were detected by a proximity ligation assay (PLA). RESULTS: Platelet activation, platelet-leukocyte aggregates, circulating MPs, EMPs, PDI, and MP-PDI activity in the diabetic CHD group were significantly higher than in the non-diabetic CHD group (P<0.05). Diabetes (P=0.006) and heart rate <60 bpm (P=0.047) were associated with elevated EMPs. EMPs from diabetes increased CD62p on the surface of the platelets compared with the controls (P<0.01), which could be inhibited by the PDI inhibitor RL90 (P<0.05). PLA detected the allosteric GIIb/IIIa receptors caused by EMP-PDI, which was also inhibited by RL90. CONCLUSIONS: In diabetic patients with CHD, platelet activation was significantly high. Diabetes and heart rate <60 bpm were associated with elevated EMPs and simultaneously increased PDI activity on EMP, activating platelets through the allosteric GPIIb/IIIa receptors.


Assuntos
Plaquetas/enzimologia , Micropartículas Derivadas de Células/enzimologia , Doença das Coronárias/sangue , Diabetes Mellitus Tipo 2/complicações , Ativação Plaquetária/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/sangue , Idoso , Biomarcadores , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Micropartículas Derivadas de Células/efeitos dos fármacos , Doença das Coronárias/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Frequência Cardíaca , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores
9.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298882

RESUMO

Platelets can modulate cancer through budding of platelet microparticles (PMPs) that can transfer a plethora of bioactive molecules to cancer cells upon internalization. In acute myelogenous leukemia (AML) this can induce chemoresistance, partially through a decrease in cell activity. Here we investigated if the internalization of PMPs protected the monocytic AML cell line, THP-1, from apoptosis by decreasing the initial cellular damage inflicted by treatment with daunorubicin, or via direct modulation of the apoptotic response. We examined whether PMPs could protect against apoptosis after treatment with a selection of inducers, primarily associated with either the intrinsic or the extrinsic apoptotic pathway, and protection was restricted to the agents targeting intrinsic apoptosis. Furthermore, levels of daunorubicin-induced DNA damage, assessed by measuring gH2AX, were reduced in both 2N and 4N cells after PMP co-incubation. Measuring different BCL2-family proteins before and after treatment with daunorubicin revealed that PMPs downregulated the pro-apoptotic PUMA protein. Thus, our findings indicated that PMPs may protect AML cells against apoptosis by reducing DNA damage both dependent and independent of cell cycle phase, and via direct modulation of the intrinsic apoptotic pathway by downregulating PUMA. These findings further support the clinical relevance of platelets and PMPs in AML.


Assuntos
Apoptose/fisiologia , Micropartículas Derivadas de Células/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Daunorrubicina/farmacologia , Células THP-1/fisiologia , Apoptose/efeitos dos fármacos , Plaquetas , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo
11.
Ann Hematol ; 100(6): 1473-1483, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893844

RESUMO

Acute promyelocytic leukemia (APL) cells constitutively express a large amount of tissue factor (TF) antigen, most of which is present in the cytoplasm. Coagulopathy may persist after induction therapy. We evaluated the overall role of circulating microparticles (MPs) in coagulation activation in APL-associated coagulopathy before and during induction therapy. Eleven adult patients with ≥ World Health Organization's (WHO) grade 2 bleeding events and 11 sex- and age-matched healthy controls were selected. All patients received arsenic trioxide alone as induction therapy. MP-associated TF (MP-TF) activity and MP procoagulant activity (MP-PCA) and 12 coagulation- and anticoagulation-associated indexes were measured before, during, and after induction therapy. Correlation between MP-associated indexes and the other 12 indexes was analyzed in patients. The MP-TF activity was negligible in controls, whereas it markedly increased in patients, dropped rapidly after treatment, and returned to normal at the end of induction therapy. The MP-PCA was similar between patients and controls. The correlation analysis revealed that TF-bearing MPs in patients mainly originated from APL cells. Partially differentiated APL cells could also release TF-bearing MPs, and the higher the degree of APL cell differentiation, the lower the ability of APL cells to release TF-bearing MPs. MP-TF was the main source of active TF in plasma and an important contributor for the coagulation activation in APL-associated coagulopathy. It was MPs released by APL cells/partially differentiated APL cells that served as the vehicle to transfer the large amount of TF to plasma to activate coagulation.


Assuntos
Coagulação Sanguínea , Micropartículas Derivadas de Células/patologia , Leucemia Promielocítica Aguda/sangue , Tromboplastina/análise , Adulto , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Feminino , Hemorragia/sangue , Hemorragia/complicações , Hemorragia/patologia , Humanos , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
12.
Cardiovasc Diabetol ; 20(1): 77, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33812377

RESUMO

BACKGROUND: Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. METHODS: In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. RESULTS: We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. CONCLUSIONS: These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM.


Assuntos
Glicemia/metabolismo , Plaquetas/enzimologia , Cálcio/metabolismo , Calpaína/metabolismo , Micropartículas Derivadas de Células/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Macrófagos/metabolismo , Ativação Plaquetária , Receptores de Trombina/metabolismo , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Micropartículas Derivadas de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária/efeitos dos fármacos , Receptores de Trombina/agonistas , Células THP-1 , Trombina/farmacologia
14.
Arterioscler Thromb Vasc Biol ; 41(1): 250-265, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028097

RESUMO

OBJECTIVE: TF (Tissue factor) plays a key role in hemostasis, but an aberrant expression of TF leads to thrombosis. The objective of the present study is to investigate the effect of 4-hydroxy-2-nonenal (HNE), the most stable and major oxidant produced in various disease conditions, on the release of TF+ microvesicles into the circulation, identify the source of TF+ microvesicles origin, and assess their effect on intravascular coagulation and inflammation. Approach and Results: C57BL/6J mice were administered with HNE intraperitoneally, and the release of TF+ microvesicles into circulation was evaluated using coagulation assays and nanoparticle tracking analysis. Various cell-specific markers were used to identify the cellular source of TF+ microvesicles. Vascular permeability was analyzed by the extravasation of Evans blue dye or fluorescein dextran. HNE administration to mice markedly increased the levels of TF+ microvesicles and thrombin generation in the circulation. HNE administration also increased the number of neutrophils in the lungs and elevated the levels of inflammatory cytokines in plasma. Administration of an anti-TF antibody blocked not only HNE-induced thrombin generation but also HNE-induced inflammation. Confocal microscopy and immunoblotting studies showed that HNE does not induce TF expression either in vascular endothelium or circulating monocytes. Microvesicles harvested from HNE-administered mice stained positively with CD248 and α-smooth muscle actin, the markers that are specific to perivascular cells. HNE was found to destabilize endothelial cell barrier integrity. CONCLUSIONS: HNE promotes the release of TF+ microvesicles from perivascular cells into the circulation. HNE-induced increased TF activity contributes to intravascular coagulation and inflammation.


Assuntos
Aldeídos/toxicidade , Micropartículas Derivadas de Células/efeitos dos fármacos , Inflamação/induzido quimicamente , Estresse Oxidativo , Tromboplastina/metabolismo , Trombose/induzido quimicamente , Actinas/metabolismo , Aldeídos/administração & dosagem , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Citocinas/sangue , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/sangue , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Trombina/metabolismo , Trombose/sangue
15.
Peptides ; 136: 170470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279572

RESUMO

Recently, artificial blood vessels modified by integrin α4ß1 ligand, such as REDV, showed endothelialization improvement and antithrombotic properties have been reported. Early endothelialization was affected by the type of circulating cells captured by the peptide in the initial transplantation state, however, it is still not clarified. In this study, we identified in vitro circulating cells bound with the peptides arginine-glutamic acid-aspartic acid-valine (REDV) or histidine-glycine-glycine-valine-arginine-leucine-tyrosine (HGGVRLY). The effect of free C- or N-terminal of HGGVRLY on the type of peptide-binding cells was also studied. The rat circulating cells were isolated from blood and incubated with 5(6)-carboxyfluorescein (5/6-FAM, F) labeled F-REDV (C-terminal free), F-HGGVRLY (C-terminal free), or HGGVRLY-F (N-terminal free). Furthermore, peptide-binding cells were identified by co-staining with various antibodies labeled with PE, PerCP/Cy5.5, or APC. N-terminal free HGGVRLY-F was found to bind to more circulating cells than C-terminal free F-REDV and F-HGGVRLY. The ratio of integrin α4ß1 positive cell bound with F-REDV, F-HGGVRLY, or HGGVRLY-F reached over 90 %, demonstrating that HGGVRLY is also a ligand of integrin α4ß1. Among identified cell types, we found that F-REDV mainly bounds with EPC and BMSC, while F-HGGVRLY with BMSC. HGGVRLY-F bounds with EPC and BMSC, exhibiting a higher EPC binding ratio than F-REDV and F-HGGVRLY.


Assuntos
Anticorpos/química , Integrina alfa4beta1/genética , Oligopeptídeos/química , Peptídeos/genética , Animais , Anticorpos/genética , Micropartículas Derivadas de Células/efeitos dos fármacos , Fluoresceínas/química , Humanos , Integrina alfa4beta1/química , Ligantes , Oligopeptídeos/genética , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos
16.
Cell Commun Signal ; 18(1): 184, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225929

RESUMO

BACKGROUND: Vascular leakage is an important pathophysiological process of critical conditions such as shock and ischemia-reperfusion (I/R)-induced lung injury. Microparticles (MPs), including endothelial cell-derived microparticles (EMPs), platelet-derived microparticles (PMPs) and leukocyte-derived microparticles (LMPs), have been shown to participate in many diseases. Whether and which of these MPs take part in pulmonary vascular leakage and lung injury after I/R and whether these MPs have synergistic effect and the underlying mechanism are not known. METHODS: Using hemorrhage/transfusion (Hemo/Trans) and aorta abdominalis occlusion-induced I/R rat models, the role of EMPs, PMPs and LMPs and the mechanisms in pulmonary vascular leakage and lung injury were observed. RESULTS: The concentrations of EMPs, PMPs and LMPs were significantly increased after I/R. Intravenous administration of EMPs and PMPs but not LMPs induced pulmonary vascular leakage and lung injury. Furthermore, EMPs induced pulmonary sequestration of platelets and promoted more PMPs production, and played a synergistic effect on pulmonary vascular leakage. MiR-1, miR-155 and miR-542 in EMPs, and miR-126 and miR-29 in PMPs, were significantly increased after hypoxia/reoxygenation (H/R). Of which, inhibition of miR-155 in EMPs and miR-126 in PMPs alleviated the detrimental effects of EMPs and PMPs on vascular barrier function and lung injury. Overexpression of miR-155 in EMPs down-regulated the expression of tight junction related proteins such as ZO-1 and claudin-5, while overexpression of miR-126 up-regulated the expression of caveolin-1 (Cav-1), the trans-cellular transportation related protein such as caveolin-1 (Cav-1). Inhibiting EMPs and PMPs production with blebbistatin (BLE) and amitriptyline (AMI) alleviated I/R induced pulmonary vascular leakage and lung injury. CONCLUSIONS: EMPs and PMPs contribute to the pulmonary vascular leakage and lung injury after I/R. EMPs mediate pulmonary sequestration of platelets, producing more PMPs to play synergistic effect. Mechanically, EMPs carrying miR-155 that down-regulates ZO-1 and claudin-5 and PMPs carrying miR-126 that up-regulates Cav-1, synergistically mediate pulmonary vascular leakage and lung injury after I/R. Video Abstract.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , Traumatismo por Reperfusão/complicações , Amitriptilina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Caveolina 1/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Claudina-5/metabolismo , Células Endoteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
17.
Clin Appl Thromb Hemost ; 26: 1076029620972467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237804

RESUMO

The prothrombotic state in patients with atrial fibrillation (AF) is related to endothelial injury, the activation of platelets and the coagulation cascade. We evaluated the levels of platelet- (CD42b) and endothelial-derived (CD144) microparticles in the plasma patients with non-valvular AF treated with dabigatran at the time of expected minimum and maximum drug plasma concentrations. Following that, we determined the peak dabigatran plasma concentration (cpeak ). CD42b increased after taking dabigatran (median [IQR] 36.7 [29.4-53.3] vs. 45.6 [32.3-59.5] cells/µL; p = 0.025). The concentration of dabigatran correlated negatively with the post-dabigatran change in CD42b (ΔCD42b, r = -0.47, p = 0.021). In the multivariate model, the independent predictors of ΔCD42b were: cpeak (HR -0.55; with a 95% confidence interval, CI [-0.93, -0.16]; p = 0.007), coronary artery disease (CAD) (HR -0.41; 95% CI [-0.79, -0.02]; p = 0.037) and peripheral artery disease (PAD) (HR 0.42; 95% CI [0.07, 0.74]; p = 0.019). CD144 did not increase after dabigatran administration. These data suggest that low concentrations of dabigatran may be associated with platelet activation. PAD and CAD have distinct effects on CD42b levels during dabigatran treatment.


Assuntos
Antitrombinas/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Dabigatrana/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Fibrilação Atrial/patologia , Plaquetas/patologia , Caderinas/análise , Micropartículas Derivadas de Células/patologia , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Complexo Glicoproteico GPIb-IX de Plaquetas/análise , Estudos Prospectivos
18.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198218

RESUMO

Microvesicle particles (MVP) secreted by a variety of cell types in response to reactive oxygen species (ROS)-generating pro-oxidative stressors have been implicated in modifying the cellular responses including the sensitivity to therapeutic agents. Our previous studies have shown that expression of a G-protein coupled, platelet-activating factor-receptor (PAFR) pathway plays critical roles in pro-oxidative stressors-mediated cancer growth and MVP release. As most therapeutic agents act as pro-oxidative stressors, the current studies were designed to determine the role of the PAFR signaling in targeted therapies (i.e., gefitinib and erlotinib)-mediated MVP release and underlying mechanisms using PAFR-expressing human A549 and H1299 non-small cell lung cancer (NSCLC) cell lines. Our studies demonstrate that both gefitinib and erlotinib generate ROS in a dose-dependent manner in a process blocked by antioxidant and PAFR antagonist, verifying their pro-oxidative stressor's ability, and the role of the PAFR in this effect. We observed that these targeted therapies induce MVP release in a dose- and time-dependent manner, similar to a PAFR-agonist, carbamoyl-PAF (CPAF), and PAFR-independent agonist, phorbol myristate acetate (PMA), used as positive controls. To confirm the PAFR dependency, we demonstrate that siRNA-mediated PAFR knockdown or PAFR antagonist significantly blocked only targeted therapies- and CPAF-mediated but not PMA-induced MVP release. The use of pharmacologic inhibitor strategy suggested the involvement of the lipid ceramide-generating enzyme, acid sphingomyelinase (aSMase) in MVP biogenesis, and observed that regardless of the stimuli used, aSMase inhibition significantly blocked MVP release. As mitogen-activated protein kinase (MAPK; ERK1/2 and p38) pathways crosstalk with PAFR, their inhibition also significantly attenuated targeted therapies-mediated MVP release. These findings indicate that PAFR signaling could be targeted to modify cellular responses of targeted therapies in lung cancer cells.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Neoplasias Pulmonares/metabolismo , Microvasos/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Células A549 , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/efeitos dos fármacos , Humanos , Microvasos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Esfingomielina Fosfodiesterase/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
19.
Circ Res ; 127(11): 1365-1380, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32998637

RESUMO

RATIONALE: People living with HIV on effective antiretroviral therapy are at increased risk of cardiovascular complications, possibly due to off-target drug effects. Some studies have associated antiretroviral therapy with increased risk of myocardial infarction and endothelial dysfunction, but a link between endothelial function and antiretrovirals has not been established. OBJECTIVE: To determine the effects of antiretrovirals in common clinical use upon in vitro endothelial function to better understand cardiovascular risk in people living with HIV. METHODS AND RESULTS: Human umbilical cord vein endothelial cells or human coronary artery endothelial cells were pretreated with the antiretrovirals abacavir sulphate (ABC), tenofovir disoproxil fumarate, or tenofovir alafenamide. Expression of adhesion molecules, ectonucleotidases (CD39 and CD73), tissue factor (TF), endothelial-derived microparticle (EMP) numbers and phenotype, and platelet activation were evaluated by flow cytometry. TF and ectonucleotidase activities were measured using colourimetric plate-based assays. ABC-treated endothelial cells had higher levels of ICAM (intercellular adhesion molecule)-1 and TF expression following TNF (tumor necrosis factor)-α stimulation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide treatment gave rise to greater populations of CD39+CD73+ cells. These cell surface differences were also observed within EMP repertoires. ABC-treated cells and EMP had greater TF activity, while tenofovir disoproxil fumarate- and tenofovir alafenamide-treated cells and EMP displayed higher ectonucleotidase activity. Finally, EMP isolated from ABC-treated cells enhanced collagen-evoked platelet integrin activation and α-granule release. CONCLUSIONS: We report differential effects of antiretrovirals used in the treatment of HIV upon endothelial function. ABC treatment led to an inflammatory, prothrombotic endothelial phenotype that promoted platelet activation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide conferred potentially cardioprotective properties associated with ectonucleotidase activity. These observations establish a link between antiretrovirals and specific functional effects that provide insight into cardiovascular disease in people living with HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Plaquetas/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , 5'-Nucleotidase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Alanina , Fármacos Anti-HIV/toxicidade , Apirase/metabolismo , Plaquetas/metabolismo , Moléculas de Adesão Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Didesoxinucleosídeos/farmacologia , Células Endoteliais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transdução de Sinais , Tenofovir/farmacologia , Tromboplastina/metabolismo
20.
Int J Nanomedicine ; 15: 6409-6420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922008

RESUMO

AIM: Tumor cell-derived microparticles (MP) can function as a targeted delivery carrier for anti-tumor drugs. Here, we aimed to generate paclitaxel-loaded microparticles (MP-PTX) from HeLa cells and examined its therapeutic potential on human cervical carcinoma. METHODS: MP-PTX was generated from HeLa cells by ultraviolet radiation and subsequent centrifugation. The particle size, drug loading rate, and stability of MP-PTX were examined in vitro. Flow cytometry and the MTT assay were performed to test the inhibitory effect of MP-PTX using different cell lines. Immunodeficient mice bearing HeLa cervical carcinoma were treated with 0.9% normal saline, MP, paclitaxel (PTX) (2.5 mg/kg), or MP-PTX (PTX content identical to PTX group) every day for 6 consecutive days. Tumor volume and animal survival were observed. Micro 18F-FDG PET/CT was performed to monitor the therapeutic efficacy. The proliferation activity of cells and microvessel density in tumor tissues were determined by immunohistochemical staining using Ki-67 and CD31, respectively. RESULTS: Dynamic laser scattering measurements showed that the particle size of MP-PTX was 285.58 ± 2.95 nm and the polydispersity index was 0.104 ± 0.106. And the particle size of MP-PTX was not change at 4°C for at least one week. More than 1% of PTX in the medium could be successfully encapsulated into HeLa cell-derived MP. When compared with PTX, MP-PTX treatment significantly increased apoptosis of tumor cells and reduced their proliferation. In addition, MP-PTX showed lower toxicity to normal human umbilical vein endothelial cells (HUVEC) than PTX. In vivo studies further demonstrated that MP-PTX treatment significantly inhibited the growth of cervical carcinoma, prolonged the survival of tumor-bearing mice, and reduced the toxicity of PTX. Immunohistochemical staining revealed that MP-PTX treatment led to decreased Ki-67 positive tumor cells and decreased microvessel density in tumor tissues. CONCLUSION: Our results demonstrated that HeLa-derived MP-PTX significantly enhanced the anti-cancer effects of PTX with reduced toxicity, which may provide a novel strategy for the treatment of cervical carcinoma.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Paclitaxel/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Portadores de Fármacos/química , Células Endoteliais/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Paclitaxel/farmacologia , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...